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Estimation of convolution tails

Eric Wil lekens'

Catholic University Leuven
and
University of North Carolina at Chapel Hill

Abstract:

Several classes of distribution functions (d.f.) are originated by considering
distributions whose tailfunctions satisfy special asymptotic relations. A large
class sharing this property is provided by the subexponential class ¢, in which
case the asymptotic relation involves tails of convolution powers.

In this paper we introduce a statistic which estimates the asymptotic behaviour
of convolution tails of a given d.f. and we show that this statistic is strongly
consistent and asymptotically normal under appropriate conditions. Furthermore,
the statistic can b~ used to test the hypothesis that a d.f. is in ¥.

Keywords and Phrases: subexponential distributions. U-statistics, strong
consistency, asymptotic normality.
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1. Introduction
We work with distribution functions (d.f.) F which satisfy F(0-)=0 and F(x) < 1

for every x ¢ R. VWe use »* to denote the usual convolution product, i.e. the

convolui'on powers of F are given as F'z(x) . J"(;F(x-y)dF(y). F*n=F*n'1nF,

»0

n=1,2,... and F ~ = §,, the d.f. of the unit mass at zero. Throughout the

OI
paper. the tailfunction of a given d.f. G will be denoted as G-. i.e. F = 1-F,
i':‘n=l—F*n etc....

We now define the class ¥ of subexponential distributions.

Definition 1.1
Ad.f. F is calied subexponential (F e ) iff
)
(1.1) lim I () = m for some integer m 2 2.
xX-p =
F(x)

It is well krown that 1f (1.1) holcds, it holds for all integers m 2 2 (see [2]).
The class ¥ was introduced independently by Chiskyakov [2] and Chover et al.
[3]. Both authors used this type of d.f. to model the lifetime distribution in
a subcritical branching process in order to determine the asymptotic behaviour
of the mean population size [2] [4].

Chover et al. [3] also introduced the class SD of densities corresponding to the

d.f. in definition 1.1

Definition 1.2,
A probability density f > O is subexponential (f e SD)

(1.2) (1) lim —;-gsl)— =1 for every 7 ¢ R
X

f"z X a
(13) (1‘) lim = &

x-o x
x
Here x denotes density convolution, i.e. f x g = .fof(x-y);(y)dy and should not
be confused with

It is clear by de l'l-l;pitall' theorem that if a d.f. F hus a density f ¢ SD,




also F e ¥.

Ever since they were 6riginated. the classes ¥ and SD have been studied
extensively by a numer of authors, such as Teugels [2], Pitman [17], Lmbrechts
and Goldie [8]. [9]. Cline [6]., Omey and Willekens [14] [15]. Since
subexponential d.f. charscterize a certain tail behaviour of compound
distributions. applications of the previously defined classes may be f~.nd in
various domains of stochastic processes, see e.g. [10] [12], [24] and references
therein.

Because of the convolution power in definition 1.1 it is often very hard to
check if a given d.f. satisfies (1.1). Sufficient conditions for membership of

¥ only in terms of the tail of F are known [6] [11]., but require an analytical

expression for F. If ad.f. is only known through a finite number of
observations, it is impossible with the present theory to decide whether this
d.f. is subexponential or not. Such situ.tions frequently arise in some applied
stochastic models such as queuing and risk theory, see [13].

In this paper, we are concerned with developing a statistical approach to
subexponentiality, in the sense that we want to define a statistic, based on a
given sample xl.x2.....xn. which gives us valuable information to decid¢ whether
the underlying d.f. is subexponential or not.

In the next section, we introduce a statistic which reflects the subexponential
property of its correspcnding distribution. In section 3 we prove that the
statistic is strongly consistent while section 4 is devoted to the asymptotic

normality. Finally section 5 contains some comments and concluding remarks.




f tat
Let Xi.xz, o X be a sequence of independent identically distributed (i.1.d.)

random variables with d.f. F., and denote by X € ... {X . the order

1:n n:n -

statistics of the sample. The following statistic is the sanple version of

(1.1) and seems a plausible choice to describe subexponentiality:

P (x)
Hx) = 0= * ) ()
P00 A
Here Fn denotes the empirical d.f. based on Xl.. ...Xn and An(x) = {w: 3i:

1 ¢1{n: Xi(u) > x}.

Notice that the indicator function IA is necessary to make sure that Hn(x) is

n
well defined.
Since Hn(x) is a ratio of V-statistics (see [20]). and IA (x) - 1 almost surely
n
(a.s.) for fixed x, we get that
Fr(x)
lim H (x) = ~——— a.s. for fixed x.
nwe D -
F(x)

In order that Hn(x) can give a meaningful description of the subexponential
behaviour of 7, we have to let x = ® which gives

lim lim Hn(x) =2 {iff Fe?.
b ol 1

This relation shows that Hn contains information about ¥, but, is in a sense
useles2 because of the zwo limits. One way to solve this problem is to
substitute for x a deterministic sequence (xn)n and letting n = ®. In this case
however, the remaining statistic depei.ds on a paramster which has to be chosen
artificially and it turng out that this parameter n;hor heavily depends on the
d.f. F, which is generally unknown (see [24]).

Ve therefore propose to replace the detsrministic seguence by a random sequence

by taking for each n one of the observations, which simost surely tends to

infinity as n = =,
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If we choose for each n the intermediate order statiutic X . :n withk -
n

" ‘
n
but —— =0, then Hn(xn—kn= n) reduces to

1
H(X .  )&=—————3 I(X +X +...¢+X . X .
n'n-k :n kn.nrl c' 1,1, iy nk m
where £ denotes the summation over all m-tuples (ll. : ...1-) consisting of m

[

)

elements of (i.....n}.

We now slightly modify Hn(xn—k =n) by removing the sum over all wm-tuples which
n

at least contain two equal integers. This will not affect the asymptotic
behaviour because their contribution to the whoie sum is of a ssaller magnitude
than the sum of the remaining terms. Finally changing the norsalizing constant

a little, we end up with the statistic we will discuss in the next sections: i
1

N S
(2.1) un(xn-k :n) e — 2 I()(i + )(i +...4 xi > xn_k :n)‘
n n (-) c 1 2 m n
Here X stands for thes sum over all combinations of m distinct elements out of
c
(ll AL 4 'n}i . j
k

Clearly for each fixed x, n—nUn(x) is a U-statistic and it seems irresistable to {
use the well known asywptotic theory for U-statistics [20] n order to determine l

the behaviour of Un(xn-kn:n)' |

However the presence of (xn-k :n) makes the kernel stochastic and n—dnpendent,
n
so that un(xn_k =n) is in fact a U-statistic with an estimated parameter., see |

[16]. [18]. Asywptotic normmlity of such statistics wus studied among others by
Randles [18]. His wethoa however is only valid when the estimated parameter is

constant, while in our case X is (under the appropriate conditionc) a

n—knm
consistent estimator for X, where x, is the intermediate population quantile,

Ky

given by the equation F(xn) = -:5. And since =" 0. x, .
In the next sactions we adapt and modify Randles wethod to make it work in our

case. The basic tool in establishing this is an a.s. Bahadui representation for
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xn—k ‘n’
n

This is provided by Watts [23]:

let F be a d.f. such that or an interval (c.»), ¢ > 0, F'(x) = f(x) and f'(x)
exist with f(x) > O, and suppose that there is a constant ¥ and a function V
with V(x) = C(x) (x-) such that

(2.2) _W%.ﬁ;)_(. and _ﬂ!‘_u.g_..&i'.lll_(l

£7(x)
for large x, whera y = o(V(x)) (x =+ ®). Define

L(x.y) := sup{f(z) | |z-x| ¢y} and N{x.y) := inf{f(z)| lz-x| < ¥}

and assume whenever y = o(V(x)),

(2.3) —L%—’(‘;“F— and ﬁ.—;(}e,—)— remain bounded as x = =,
k k

n n
Then, under (2.2) and (2.3). for any sequence kn with — 0 and -long. - @,

nF (x)-k
2 X n n h+R

(2.4) X . . +
n kn-n n nf(xn) n

_ X
n
where F(xn) x — and
(2.5) R_ = 0((k, logn)'/* /nf(x )) as n == with probability one.

Before we proceed investigating the properties of Un(xn—k :n)' we first show
n
that the conditions (2.2) and (2 3) are satisfied for a large subclass of

subexponential distributions. Also notice that every d.f. F in ¥ is close to a

subexponential d.f. G (in the sense that F(x) .. G(..) (x = ®)) with G infinitely
many times differentiable [19], so that it is no loss of gensrality to assume
that the derivatives of F exist.

We need the following class of functions which generalizes properly the class of
slowly varying functions (see [1]): L ¢ OSV 1ff there exist absolute constants
0 <Cc C (» guch that for every t 2 1,

0¢ec ¢ 1minf HEL ¢ 1imwp HEL cc o
x-m x-.

‘_g‘._A‘_‘

b

- g %




Theorem 2.1
Let F ey and L e OSV such that
- x
(2.6) F(x)-m-xafl%ndy (0¢agl).
Assume that
' l1-o

(1) lim sup %"—T (= ifa>0

xw | (U7 S )
(11) L is bounded away from O and lim sup [xL'(x)]| < ® if a = 0.

x-

Then (2.2) and (2.3) are satisfied.

Proof .
Stnce V2! ia XL o7 (gg% %ﬂdy + L(x)) ~ ™Y —%ﬂ dy 1fa>0
(2.7) F(x)
= x L(x) 1f a=0
it is clear that the first property in (2.2) is satisfied.

First consider a > 0: with the expression for Va in (2.7). it is easy to see

that F(x + o(V_(x))) ~ F(x) (x+) and then (2.2) follows tmmediately from the

regular variation of Va and (2.7).

is

To show the second part of (2.2). it is sufficient to prove that |[§]
bounded, which is satisfied by (i).
If a=0, Vo(x) = ﬁ;)- = O(x) since L is bounded away from zero.

The same reasoning as for the case a > 0 completes the proof. o]

Remaxks ,
1. Clearly the representation in (2.6) contains all important archetypes of

subexponential d.f. Huwever, since L is bounded from below if a = 0, it always

implies that
(2.8) F(x) = o(x®) (xw)
for some ¢ > O, such that (2.6) does not cover d.f. with slowly varying tails.

This is not surprising as such distributions generully violate the first




condition in (2.2), see e.g. [7].

2. Clearly (2.3) implies that F(x + o(V(x))) = O(F(x)) (x=»). whereas the

representation in (2.6) gives that

(2.9) F(x + o(V(x))) ~ F(x) (x-w).

This somewhat stronger condition will be used in section 3.

3. Stronk consistency of Un(xn_kn,n)
Theorem 3.1. Let Xl.Xz. R .Xn be a sequence of {.{.d. random variables wi‘h
d.f. Fand let F' = f ¢ SD. Suppose that (2.2), (2.3), (2.8) and (2.9) are
satisfied.

l‘n 3
If (kx.)n is a regularly varying sequence such that - 0 and kn/lo; n < o, then

un(xn-knm) “m a.s.

Proof. From the a.s. Bahadur representation in (2.4) and the law of {iterated

logarithm for triangular arrays [5]. we easily obtain that

xn-kn:n =%t Tn * Rn ‘= h(n)

hare T_ l;l.o[ \&nlogloc kn/nf(x“)
[ nexy)

and Rn is as in (2.5).

(=)

It is therefore sufficient to show that

Un(h(n)) “m a.s. as nw,
kn ~ kn
- Un(x) denote the projection ot the U-statistic - Un(x) on the basic

observations ([20. p. 187]). then one easily calculates with the wethod of [20,

Let

p. 182] that for every n 2 m,
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2 ~ -
{3.1) [?] [;] E(U(x) - U (x)}% = (F™(x))2 + (F®(x) - nF(x))
- w5 (F L (x-y))2dF(y) =
o(F(x)) (x =+ =),

The last step follows from the fact that f ¢ SD and [14, lemma 3.1.1]. From the

first condition in (2.2), we have for n sufficiently large that

Y ) M.V(x)

nf(xn) i

1/¢
Furthermore, (2.8) implies that X =0 -nT] ] (n = ®), such that

log (l/e log vk ) 172
w—r =0 (n =)
Since k /log’n +®. we have that 'rn = o(V(x)) (n =), and since R_ = o(T )
(n = »), we obtain that
(3.2) h{n) = x ¢ o(V(xn)) (n = w),
Together with (3.1) and (2.9), this implies that

E(U_(1(n))) - U_(h(n)))? = o[ﬂl‘-ziﬂn-] - o{-n%] (n = =)
n
n

and since lo("‘n = o(kn) (n = »), it follows from Chebychev's inequality and the
Borel-Canteili lemsa that
(3.3) U (h(n)) - U_(h(n)) =0 a.s. (n=e).

From (3.2) and (2.9) we have that F(h(n}) ~ wF{x ) (me) such that with (3.3).
the proof is finished if we can show chat

(3.4) U (h(n)) - E: F(h(n)) ~0 a.s. (n).
Now

35 kn nd n D el 1

(2.5) 00 =% 3 Pl - xp) - ) PR
so that




<

E(U_(h(n)) - I F™(h(n)))?

n
2
- 2o (F™(a(n) - y))2F(y) - (F™(n(n))?)
" n..2 -
(3.6) ~ -;r F(h(n)) (n-w)
n
2
~ (n-m).
n

As in (3.1), (3.6) follows from the fact that f ¢ SD and [14, lewma 3.1.1].
Taking o > 1 arbitrary, and putting n, = [ae]. €=1,2,..., it follows from (3.6)
and the Borel-Cantelli lesma that (3.4) holds 1f the limit is taken over the
subsequence ("0)8' Our aim however is to let 0 - 1 and to prove convergence
over the whole sequence.

Take n > O arbitrary and let & = ¢(o.n) be such that [ae] {n < [ahl]. Without
loss of generality we may assume that the sequence (h(n))n is monotone non

decreasing., such that

(3.7) I, o(8) S U (h(n)) - B~ F™(h(n)) < T, (&)
n
with
n
Iy.of® = &= ﬁx(?‘"l(h([oel) - X,) - F™a(e® ')
and
n
(0= 3 F e - x) - FRaeln).
' n i=l
Now

| ¢ = e
I, ,(&) = 5; JZ FTo0]) - X)) - FR(e D))

. "1:—‘ F™(h([%])) - P’ 1.

Clearly the first term in the right hand side tends a.s. to zero as & ~» »,
Since f ¢ SD, the second term is asymptotically equal to
2 ke ¢
m'n 4 - &+1 2 -1, ~1 n [¢7]
= (F(h([o”D)) - F(h([o" 1))} ~ m"{1 - k ok il :
Since (k“)n is a regularly varying sequence, we then have that
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1im e I, (&) = O.
ool tm 20

The same treatment for I1 a(e) and (3.7) imply (3.4). This completes the

proof . o

4. Asymptotic normality of Un(xn-kn:n)'

For proving asymptotic normality, we use the following smoothness condition

which is somewhat stronger than f e SD:

x2 '
(4.1) 1w LX) o,
X~50
Clearly from de 1'Hopital's theorem, (4.1) implies f e SD.

Theorem 4.1.
Let xl.xz.b...xn be a sequence of i.i.d. random variables with d.f. F and let

F' = f. Suppose that (2.2), (2.3) and (4.1) are satisfied. If (kn)n is a

k -
sequence such that -nL - 0 and kn/logsn - o and if F(xn) = kn/n. then

i i?""(xn) d 0

n |nnek in) — — - N (0,4m")
F(xn)

Proof

For the proof of the theorem we follow Randles [18] and we split up

1_(2 U (X _ ?‘m = A h
n n( n-kn:n) (xn) = l(m-n) + Az(m.n) where

k

(4.2) Amn) = 2U (x) - F™(x ) + ?‘“(xn_knm) - P™(x )
and
kn em kn m
(4.3) Ay(mn) = 22U (X ) -Fr(X ) - 2 U (x )+ Frz).
n n

Each of the terms Al(m.n) and Az(m.n) vjll be considered in a separate lemma,

and the proof of theorem 4.1 follows immediately from & combination of both.
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Lem>s 4.2
Under (he conditions of theorer 4.1,
d 2
Al(-.n) -+ N (0.4m")
vk
n

Procf

Using a two term Taylor expansion, we can write

* %(xn-kntn-xn)z( fm) ‘ (en)

(4.4) Fr(Xy o) = Folx) = (X n-k_:n o) ()
vhere IGn(u) - xnl < lxn_k (@) - xnl. The Bahadur representation in (2.4)
implies that
nf(xn)
(4.5) ———(X, pXp) = O,(1)
vk_ n
n
vk_

n
such that On = xn + Op(-ﬁ‘(x—nr) (n o =»),

vk
Cleariy by (2.2). Tﬁx—y = o(V(x)) (n-w).
n

Furthermore, from (4.1) and [14, lemma 3.1.3], we have that

f“' .x
lll‘—f‘n‘}é—l=-+ 1.
X5

vk

Using this, we can write

k

(45)-()( = n-x)(f )'(6,) = £'(x_ *O(m))o(m';) (nw).

With Gn defined a. in (3.5), we have from (3.1) that

l"x))

(4.7) U (x) = U(x ) + o (—Rn——) ().

Combination of (4.4) - (4.7). (3.5) ard (2.4) implies that
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(4.8) —=—A (m.n} = 2 g (r"‘“(xn-xl) - F""(xn) + I(X > x ) - F(xn))
i_ 1=t
n n
£ ™(x ) £ %(x ) 3
- . log'n,1/4
+ (—-ﬂ;;r m) - 0y(1) + —ﬂ;;ro(( % )7 )

vk -
£ (x, + Op(—lﬁ—%r)) F(x))

1 F("n). /2
+ —‘%‘ ) * O (—) ¢ op((——,r) ) (o).
n \&n

Since
Var(?.rl(xn-xi) + I()(i > xn))
. 1 P ) F(y) + FF(x) - (Fox) + Flx))®

~ Flx,) (143)
4-k
n
n
and since all remainder terms in (4.8) tend to zero, it is easy to see by the

(n=»),

central limit theorem for triangular anays [5] that the desired limit law for

Al(-.n) holds. This completes the proof. o
Lewea 4.3.
Under the conditions of theorem 4.1.

n P
(4.9) Az(-.n) - 0.

vk_

n
Proof
Denote
om
h(x, .x, .....x, :q) = I(x, +x, +,....+X >q) - F (q)
il 12 i. il 12 11:

and put
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Q(s) :=

vk m "

n

n [
— -[n]-z{h(x l'xiz.“”xi Px o+ m) h(xi .xiz.....xi .xn)).

In this notation. (4.9) is equivalent to showing that

nf(xn) p
On( - xn)) - 0.

(X

n-K_‘n
Jk n
n

By (4.5). it is therefore enough to prove that for some bounded interval C,

(4.10) F(sup Qh(s) >e) 20 (n-w),
seC

for every e > O.
The way to show (4.10) follows more or less the same lines as the proof of [21.
Theorem 3.1].

We first investigate the differences of the kernel h: for 0 { s ( t,

vk
n n
(4.11) 1;|h(xil.x12.....xim;xn +— i t) - h(xil'xiz'“”xim;x“ * AT s) |
vic_ R )
SE(I(an-ﬂx—)ng; +Xim$xn+m;(:-)—)+l-‘ (xn+m. t)
- My v, vy
- F (xn*ms)‘}=2 —T—T.rf (x +-mfxn.u)du
vk_
§ 2me; — ¢ (t-5)

wvhere < > O is some absolute constant.

For 6 > 0 and integer r to be specified later, define

vk
1 8 , n
Q, (s) = 2— 3(h(x; Xy .eoeiXy Xt arrEey ¢ 8)
’ ‘A‘nm © 1 2 mo MUy
vy
- h(xil,xiz.. .xim;xn + E-f_(_x:)- r+5)).
Then
(4.12) Q.(s) =Q (s) +Q ((rd).
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First consider Qn o(rb). Then

vk
o(rb) = F‘:-[—F I I E(h(X, '""x:_"‘n + 'W:-;)- ré) - h(xil.....xt.;xn)).

(h(XJ veeaaX .x+—‘:-(n-—)-- ré) - h(x .....XJ ;xn)).

1 ]
Consider all terms with £ { m equal components, then by the boundedness of h and

(4.11), the contribution of these terms will be smaller than

2 vk_
2 ':';'[:Tf(;e)‘f_“~°z nl™ 2 (o).
m vkn

If & = 0, obviously the expectation of ths product is zero. so we may write

E qﬁ.o (rd) < ¢3 ° 6r—
vk
n
implying that
P
(4.13) Qh o(rb) -0 as nw»,
We now treat Qn l_(s).
Denote
H (X X i + —n 6 (X, +. +X &: +1)6)
LS s PR 1.) = 1(x, nﬂxnf b 1 Sx nﬂx ;(r )
k_ vk_
+ Fi(x + !W::y(ru)a) - F(x + M“-T@-ro).
then by (4.11),
(4.14) eup JQ (8)) S BE—prIH (X, .....X, )
ré6<s<(r+1)8 % — : c T 1 e
n
D +2mc, *&
where
n 1
D = = E]-z (H_ (X 11"“"‘1_) - mr'n(xll.....xi-))
n

p
In the same way as forQno(rG). one can show thatm:-'Oso that Dn-vO.

Now let C be any bounded set in R and let & be arbitrary.
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Choose & = e/&cl. then CC U [r5, (r+1)5) with K a finite set of integers.
= rek
By (4.i2).
sup Q (s) { sup { sup (s) + (ré)}
seC oh rek r6$s<(r+l)6qn‘r qh'o
such that

Psup Q(s) > &) < (WK sup  [Q, (3)] > e/2) + P(Q, (r8) > e/2)).
sSe

ré<{s<(r+1)8
Then by (4.13) and (4.14),

P
- 0,
1B Q¥

proving the lemma. o

5. Some commerits and concluding remarks.

Writing the statement in theorem 4.1 in the following way

d

B (R U (X, ) - Fo(x)) N (0.4a2)
n

vk

n
k

shows that —:‘T Un(xn—k =n) is a consistent and asymptotically normal estimator
n

for the behaviour oi the tail of the m—th convolution power of F.

It would be highly interesting for practical purposes to know when the ratio

p
F(x )

B in theorem 4.1 can be replaced by its limit m. To establish this, we
F(xn)

need information on the difference
=) =
(5.1) F (xn) - IF(X“).

A second order theory for subexponential d.f., providing the asymptotic

behaviour of (5.1), has been established by Omey and Willekens [14].[15]. Using

the results in [14]. we know that for a large subclass of ¥, the difference in

(5.1) behaves as 2u(3)f(x,) (n-™), where u = J';xd}'(x). We then have the

following
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Corollary 5.1
Suppose that the conditions of theorem 4.1 are satisfied and that
-2 -
lil"E‘ x) - 2F(x a2y (»,

X x

If kn is such that nf(xn) = o(\dt—n) (), then
vk | (un(xn_kn:n) - m) =+ N (0.40°).

The condition on kn in corollary 5.1 involves the density f and shows that kn
mist not grow too fast as n-w,

In the special situation that F has a regularly varying tail, we have form [14].

Corollary 5.2
Let XI.X2.... .Xn be a sequence of i.1.d. random variables with d.f. F such that

F is regular!y varying with index ~a. Suppose that (2.2) and (2.3) are

satisfied.

1
If kn is a sequence such that kn = o(na/2 * 1) and lo¢3n = o(kn) (=), then

d

(5.2) vk (U (X, . ) - m) =N (0.4)

-k_:n
n
Clearly. if kn = 0(lo¢pn) for some B > 3, (5.2) holds uniformly over the class

of d.f. with regularly varying tails which satisfy (2.2) and (2.3).

It is well known that the class ¥ can be embedded in the family (¥(v). ~ 2 O}.

where d.f. F in ¥(v) satisfy

=2 -
1im ) . of(v) ¢ »
X F(x)
with f the Laplace transform of F.

A similar result as in theorem 4.1 can be established for the classes ¥(~).

¥ > 0, but in this case the asymptotic variance will depend on F.
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